En geometría, un cono es un sólido de revolución generado por el giro de un triángulo rectángulo alrededor de uno de sus catetos. Al círculo conformado por el otro cateto se denomina base y al punto donde confluyen las generatrices se llama vértice.
En el dibujo, podemos distinguir los elementos de un cono recto:
Eje: es el cateto AC. Alrededor de él gira el triángulo rectángulo.
Base: es el círculo que genera la rotación del otro cateto, AB. Por lo tanto AB es el radio del cono. La base se simboliza: O (A, AB).
Generatriz: es la hipotenusa del triángulo rectángulo, BC, que genera la región lateral conocida como manto del cono.
Altura: corresponde al eje del cono, porque une el centro del círculo con la cúspide siendo perpendicular a la base.
Base: es el círculo que genera la rotación del otro cateto, AB. Por lo tanto AB es el radio del cono. La base se simboliza: O (A, AB).
Generatriz: es la hipotenusa del triángulo rectángulo, BC, que genera la región lateral conocida como manto del cono.
Altura: corresponde al eje del cono, porque une el centro del círculo con la cúspide siendo perpendicular a la base.
El cono tiene una cara basal plana y una cara lateral curva. Posee una arista basal y un vértice llamado cúspide.
Tipos
Si la altura coincide con su eje, el cono es recto. Si el eje y la altura no coinciden, el cono es oblicuo.
Si la altura coincide con su eje, el cono es recto. Si el eje y la altura no coinciden, el cono es oblicuo.
Al cortar un plano a una superficie cónica, obtenemos distintas figuras geométricas: las secciones cónicas. Dependiendo del ángulo de inclinación y la posición relativa, pueden ser: circunferencias, parábolas, elipses, hipérbolas.
Si el plano pasa por el vértice la intersección podrá ser: una recta, un par de rectas cruzadas o un punto (el vértice).
Las curvas cónicas son importantes en astronomía: dos cuerpos masivos que interactúan según la ley universal de la gravitación, describen órbitas similares a secciones cónicas: elipses, hipérbolas o parábolas en función de sus distancias, velocidades y masas.
También son muy útiles en aerodinámica y otras aplicaciones industriales, ya que permiten ser reproducidas por medios simples con gran exactitud, logrando volúmenes, superficies y curvas de gran precisión.
No hay comentarios:
Publicar un comentario