martes, 19 de octubre de 2010

CONO

 En geometría, un cono es un sólido de revolución generado por el giro de un triángulo rectángulo alrededor de uno de sus catetos. Al círculo conformado por el otro cateto se denomina base y al punto donde confluyen las generatrices se llama vértice.

En el dibujo, podemos distinguir los elementos de un cono recto:
Eje: es el cateto AC. Alrededor de él gira el triángulo rectángulo.
Base: es el círculo que genera la rotación del otro cateto, AB. Por lo tanto AB es el radio del cono. La base se simboliza: O (A, AB).
Generatriz: es la hipotenusa del triángulo rectángulo, BC, que genera la región lateral conocida como manto del cono.
Altura: corresponde al eje del cono, porque une el centro del círculo con la cúspide siendo perpendicular a la base.
El cono tiene una cara basal plana y una cara lateral curva. Posee una arista basal y un vértice llamado cúspide.
Tipos
Si la altura coincide con su eje, el cono es recto. Si el eje y la altura no coinciden, el cono es oblicuo.







Al cortar un plano a una superficie cónica, obtenemos distintas figuras geométricas: las secciones cónicas. Dependiendo del ángulo de inclinación y la posición relativa, pueden ser: circunferencias, parábolas, elipses, hipérbolas.
Si el plano pasa por el vértice la intersección podrá ser: una recta, un par de rectas cruzadas o un punto (el vértice).




Las curvas cónicas son importantes en astronomía: dos cuerpos masivos que interactúan según la ley universal de la gravitación, describen órbitas similares a secciones cónicas: elipses, hipérbolas o parábolas en función de sus distancias, velocidades y masas.
También son muy útiles en aerodinámica y otras aplicaciones industriales, ya que permiten ser reproducidas por medios simples con gran exactitud, logrando volúmenes, superficies y curvas de gran precisión.







No hay comentarios:

Publicar un comentario